If machine learning is not the same as human learning, and if machine learning can end encoding the weaknesses of human decision making as much as its strengths, perhaps we need some smarter ways of doing AI. That’s the premise for a new Google initiative on what they are calling human centred machine learning, which seems to involve bringing in more of the insights and approaches of human-centred design together with a more sophisticated understanding of what counts as a well-functioning AI system – including recognising the importance of both Type I and Type II errors.